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(Received 3 September 1990 and in revised form 2 July 1991) 

This paper extends the analysis of Sneyd (1985) on interfacial instabilities in 
aluminium reduction cells. The cell model consists of a plane fluid layer of relatively 
low electrical conductivity, sandwiched between an upper rigid wall and lower fluid 
layer, both of high conductivity. A steady current passes through the layers, and the 
magnetic field is assumed to be a linear function of position. The principal new effects 
introduced are (i) a horizontal current component in the aluminium; (ii) vertical 
magnetic field components, and vertical field gradients ; (iii) an aluminium pool of 
finite depth; and (iv) uniform zeroth-order flow in the fluid layers, and mechanical 
dissipation. A dispersion relation for small-amplitude waves is derived and discussed. 
The destabilizing Kelvin-Helmholtz mechanism and electromagnetic forces compete 
with gravity, surface tension and mechanical dissipation. Electromagnetic des- 
tabilization is likely to occur in practice at wavelengths of 1 m or more, and becomes 
more intense with decreasing layer depths. The most dangerous mechanism appears 
to be driven by vertical gradients of the horizontal field. 

1. Introduction 
A typical aluminium reduction cell, shown schematically in figure 1 (a) ,  carries a 

current of order lo5 A across an area of several square metres. The current enters the 
cell via the carbon anode, then passes through a narrow, poorly conducting layer of 
cryolite (a molten mixture of sodium and aluminium fluorides) which floats on a pool 
of liquid aluminium. The current then leaves the cell via the carbon cathode block, 
and is collected by a system of bus bars. 

This intense current density J creates a magnetic field B and hence a Lorentz force 
J x  B which has an important influence on the cell dynamics. One effect is to curve 
the upper free surface of the aluminium (Lympany, Evans & Moreau 1983), which 
makes the current distribution non-uniform. Also, if the cryolite layer is too thin it 
may become unstable, the aluminium rising and making contact with the carbon 
anode, thus short-circuiting the current path. This effect is particularly troublesome 
since in order to reduce the cell resistance and hence the power consumed, the cryolite 
layer should be as thin as possible. 

The first author to analyse magnetohydrodynamic (MHD) effects in aluminium 
cells was Urata (1985), who calculated numerically normal modes and frequencies of 
electromagnetically driven waves, and applied the results to improve cell design. His 
work highlights the influence of cryolite layer thickness and magnetic field 
distribution on instability growth rates. PotoEnik (1989) has also carried out 
numerical simulations of waves driven by Lorentz forces, and found similarly that 
the layer depth and field distribution are crucial factors. Both of these studies 
indicated that unstable modes are of relatively long wavelength - 1 m or more. 
Fraser, Billinghurst, Chen and Keniry (1989) have developed numerical methods for 
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FIQURE 1.  (a) Schematic diagram of a Hall-HBroult cell. (6) Diagram of the model system. 

finding the electric current and magnetic field distributions within a cell, and 
proposed a simple model of the field distribution. 

Several authors have also studied the problem analytically. Sneyd (1985) 
considered a model in which uniform normal current flowed through a poorly 
conducting fluid layer, bounded above and below by a solid (carbon) and an infinitely 
deep fluid layer, both of much higher conductivity. The layers were assumed to 
extend to infinity in the horizontal plane. The magnetic field was horizontal and a 
linear function of position, resolved into a component due to the local current 
distribution, and a far component due to remote currents such as those in the bus 
bars. The fluid layers were assumed plane, inviscid, and initially in hydrostatic 
equilibrium. It was found that the far magnetic field could drive a long-wavelength 
instability which became easier to trigger as the cryolite depth diminished. (We shall 
refer to Sneyd 1985 as paper I). Moreau &. Ziegler (1986) considered a somewhat 
different model in which the field and current are uniform, but with a horizontal 
current component in the aluminium layer. Their model also includes mechanical 
dissipation in the fluid flow, by means of a linear frictional term. Their conclusions 
as regards Stability are generally similar to those of paper I, but the stability 
mechanism seems to be somewhat different. In paper I, the essential instability 
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mechanism depends only on the spatial derivatives of the magnetic field, which are 
absent from the model of Moreau & Ziegler (1986). 

Thc aim of this paper is to make the model of paper I more realistic by including 
several new effects believed to  be important, while retaining simple analytical 
methods. As before the fluid layers extend to infinity horizontally, but the 
aluminium depth is finite. We also include horizontal current and vertical magnetic 
field components, but retain the assumption that the field is a linear function of 
position. We also abandon the assumption of initial hydrostatic equilibrium - the 
fluid layers now have uniform horizontal velocities - and mechanical dissipation is 
modelled by the linear frictional term of Moreau & Ziegler (1986). We derive a 
dispersion relation for waves on the cryolite-aluminium interface, which shows the 
effects of the new physics introduced. Since the layers are in relative motion a 
Kelvin-Helmholtz instability appears, while linear friction gives rise to a damping 
term. Mutual attraction between the horizontal current lines produces a tearing- 
mode-type instability, as analysed by Murty (1961). The two strongest destabilizing 
terms however depend only on the vertical current component. These become 
important only for wavelengths of order 1 m or more, and increase with decreasing 
layer depths. Both depend on the magnetic field gradient, the most violent 
instability being driven by vertical gradients of the horizontal field. 

A recent study by Pigny & Moreau (1991) also analyses the effects mentioned in 
the previous paragraph. Their analysis is more complicated since for added realism 
they assume a linear spatial variation in the equilibrium electric current density J.  
Consequently the dispersion relation obtained by Pigny & Moreau is spatially 
dependent, and the analysis is justified by the assumption that the lengthscale over 
which J varies is much greater than one wavelength. In this paper we take a simpler 
approach and assume a t  the outset that J is uniform. This gives a homogeneous 
dispersion relation in which all terms (with one minor exception) are constants. Slow 
variations in J could then be modelled by a slowly varying dispersion relation - as in 
ray theory. 

In  $2 we discuss in detail the mathematical model; $3 analyses the forces which 
arise from a cryolite layer perturbation, and in $4 we derive the dispersion relation. I n  
5 5 we interpret this dispersion relation, discuss its implications, and present graphs 
of critical Froude number versus wavelength for various magnetic field gradients and 
layer depths. I n  $6 we discuss the physical interpretation of our results, and finally, 
our conclusions are summarized in $7.  

2. Mathematical model 
In order to obtain a simple dispersion relation and to highlight the essential 

physics, we ignore edge effects and assume that the cryolite and aluminium layers are 
unbounded horizontally, occupying the regions 0 < z < h,, - hl < z < 0 respectively. 
We shall consistently use subscripts 1 and 2 to  refer to variables in the cryolite and 
aluminium layers respectively. The region z > h, is the carbon anode, and z < -h, 
the carbon cathode block. 

Denoting the electrical conductivity of carbon by re, we assume that the ratios 

are both large -typically of order lo2. Thus aluminium is a much better conductor 
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than carbon, which in turn is a much better conductor than cryolite. In  the weakly 
conducting cryolite the electric current is purely vertical and we set 

J,  = J,?, J ,  = const. 

The assumption of constant J ,  is of course an idealization which will be invalid near 
the edges of the anode, where the growth of a solid cryolite ledge causes local current 
deviations (Fraser et aE. 1989), but is a reasonable approximation throughout the cell 
interior. The highly conducting liquid aluminium generally carries a significant 
horizontal current, so aligning the x-axis to this component we write 

Again our assumption of constant J1 is in reality unjustified, but necessary to 
obtain a simple dispersion relation. In a typical cell JH may in fact change sign 
(Fraser et al. 1989) so our model will be realistic only in certain subregions. Pigny & 
Moreau (1991) have taken account of a linearly varying JH in their analysis. 

The unperturbed magnetic field satisfies 

V x B = po J ,  

and we assume the simplest possible spatial dependence for B - namely linear, since 
J is constant. Thus we write 

where a is a constant second-order tensor. Since B must be continuous at  z = 0 we 
insist that 

where ( f )  = (f,),=, - (fi)z=o denotes the jump in a variable across the interface. Also 

B = a - X ,  (2.1) 

(a i j )  = 0; i = 1 , 2 ,  3 ;  j = 1, 2 ;  

/%IJ= ( a 3 2 - a 2 3 '  a 1 3 - a 3 1 ,  o L Z 1 - a 1 2 ) ,  

so = < 0 1 3 1 )  = ' 9  

and since V - B = 0, 

so the only component of a to  be discontinuous across z = 0 is aZ3 = - JH. Thus the 
tensor a is conveniently written in the form 

( 0 1 3 3 )  = - ( 0 1 1 1  +a*,> = 0, 

Here JH1 = JH, JH2 = 0 ,  and (3 is a constant (dimensionless) symmetric tensor which 
represents the effect of the distant currents, such as those in the bus bars connected 
to anode and cathode. Note that we could also add a uniform field to  the right-hand 
side of (2.2) but this is simply equivalent to a change of origin. Moreover, we shall 
show in $3 that a uniform magnetic field has no effect on the dispersion relation, 
apart from a gravity-like term arising from the interaction of J, and B,. 

Flow in the aluminium and cryolite layers is turbulent, with the further 
complication of CO, bubble formation at the carbon anode, which causes 
inhomogeneity in density and electrical conductivity. Here we shall adopt the linear 
frictional equation of motion of Lympany et al. (1983). 

Du 
P-= Dt - V p + F -  KU, (2.3) 
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where F is the body force per unit volume and K a constant coefficient of friction to 
model the dissipative effects of viscosity and turbulence. This drastic simplification 
can be justified by integrating across the layer the NavierStokes equations for the 
nearly horizontal flow, and appears to work well in practice (Lympany et al. 1983). 

It should be emphasized that we make no attempt to solve the equations of motion 
in the unperturbed state. This would be a difficult task since the flow is turbulent and 
largely controlled by conditions in the channels surrounding the anodes, so we simply 
assume that some unperturbed state exists. We also assume that in the region being 
analysed, the horizontal unperturbed flow u = U,, i = 1,2,  is uniform in the two fluid 
layers. Our analysis thus provides no theoretical estimate of the U,, and when 
presenting results we assume measured experimental values. 

A final approximation is that the magnetic diffusion time is short compared with 
a wave period (or growth time of an instability) so that current and magnetic field 
perturbations can be calculated using static methods. This assumption can be 
justified a posteriori (paper I). 

3. Forces due to interfacial perturbation 

Imagine that the cryolite/aluminium interface suffers a perturbation 

3.1. Current perturbation 

z = q = qoeix, x = k .X-wt ,  (3.1) 

where qo is a (small) constant, and k = ( 1 ,  m ,  0 )  is a horizontal wavenumber vector. 
Current now tries to flow through the narrowest part of the poorly conducting 
cryolite layer, and we calculate the perturbation using Ohm's law and the 
electrostatic approximation : 

Thus the current perturbation j ,  in either layer can be written in the form 

J = crE, V x E = 0. 

j ,  = Vq5,, where V2q5, = 0. 

Introducing the harmonic functions 

H+ = &z e'X, H- = e-kz eiX 

we write q5, = a:H++a;H-, i = 1,2,  

where the a$ are constant coefficients to be determined. 

here $2 must be constant: 

where K ,  = kh,. On the other hand, the cathode block z = -h,  is insulating in 
comparison with aluminium, and here the normal component of the current 
perturbation must vanish : 

At z = 0 we invoke continuity of normal current, and constancy of q5, a t  the highly 
conducting aluminium interface : 

The anode boundary z = h, is highly conducting in comparison with cryolite, so 

a: eKs + a; epKS = 0, (3.2) 

a: e-Ki -a- 1 e 1 - -0 .  (3.3) 

":-a; = a:-a;-iJHqol/k, 

a:+a;+J,q, = 0. 

A more detailed discussion of the boundary conditions for arbitrary layer 
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conductivities is given in the Appendix. This further justifies the approximate 
conditions (3.2)-(3.5). 

Solving (3.2)-(3.5) for the coefficients yields 

=+Jo70(%z-1), a, =-+Jo70(%z+l), (3.6a, b) 

where y = coth (Ki ) .  

We write the magnetic field perturbation b, in each layer in the form 
3.2. Magnetic field perturbation 

b, = bAi+bPir i = 1,  2,  

where 6 ,  satisfies Amperes law, and b, is an irrotational correction necessary to ensure 
continuity a t  z = 7. We can set 

b (3.7) - CL 0 (V$i  - V $ t )  x 2, A( - k 

and it is easily verified that 

V.bAi = 0, V x bAi = p$$, i = 1 ,2 .  

Since the magnetic field is continuous across z = 7, 

(4 +b,),-, = (4 + b,),-,, 

which to leading order in qo yields 

or using (2.2), 

Equation (3.7) can be written in the form, 

( b )  = PO JH 79. 

(3.9) 
iCL0 iP0 bAi = %QZi k X 2 or (bA)  = - &)k x f. k2 

Continuity of normal current at z = 7 shows that Q,) = iJHlr (cf. 3.4), and 
substitution into (3.9) yields 

-/A J 1 
(b , )  = O Z H  ' k x f .  

k 

Now combining (3.8) and (3.10) we find 

(3.10) 

(3.11) 

Note that since j, is continuous across the plane interfaces z = h, and z = - h,, (3.9) 
shows that b, is likewise continuous, so the only discontinuity in b, is across z = 7. 
To find the (unique) irrotational and solenoidal b, which satisfies (3.11) and vanishes 
a t  z = + m ,  we set 

b,, = V(aH+), b,, = -V(aH-). 
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The constant a is determined from (3.11) to be 

a = - ipO JH qo m/2k2. 

3.3. Lorentz force perturbation 
The Lorentz-force perturbation F is given by 

Since V x b, = 0, we can write 
F =  j x  B + J x  b. 

1 

PO 
F = - [ (V x bA) x B + (V x B) x bA J + J x bp = FA + Fp - VpM,  

117 

(3.12) 

where 
1 

PO 
FA=-[(B.V)bA+(bA.V)B],  Fp= J x b , ,  

and p ,  = B.bA is a magnetic pressure term. It turns out when calculating the 
dispersion relation that the essential information is the divergence and vertical 
components of FA + Fp. The magnetic pressure term is simply incorporated into the 
fluid pressure. 

Since V-F, = 0 we need only consider the divergence of FA, given by 

where the suffixes denote components (not layers) and the summation convention 
has been used. Alternatively, using tensor notation we can write 

2 2 
V - F  A -  - -(VB)T:Vb = -aT:Vb. 

PO PO 

We then find, using (2.2) and (3.7), that 

V .  FA, = qo(d: H+ + d ,  H-) ,  

where the constant coefficients d* are given by 

d: = y( i /3v - /3H)az ,  d; = -(iP,+P,)a;, 2Po Jo 
k 

(3.13) 

(3.14) 

(3.15) 

(3.16a, b)  

Thus the coefficient PH depends purely on the horizontal magnetic field components 
and their horizontal derivatives, while Pv depends on vertical components or 
derivatives of the far field. 

Since b, is horizontal, 

and since the only horizontal component of J is J,, 

fPZ = 4bPY. 

Using (2.2), (3.7) and (3.12) we find 

(3.17) 
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where the coefficients V$ are given by 

(3.18a, b)  

(3 .18~)  

The final term in V l  is the only manifestation of b,. 
It is interesting to note that all the essential coefficients d:, Vf  depend only on the 

gradients of B. The presence of an additional uniform magnetic field would therefore 
not change the expressions (3.18). 

4. Dispersion relation 

Linearizing (2.3) we find that the fluid velocity perturbation u satisfies 
4.1. Pressure perturbation 

p,[$+(Ui-V)u,] = -VP,+F,,-K~U,, i = 1, 2, 

where pi = pMi plus the fluid pressure perturbation, and FT = FA + Fp. We assume 
that ui, like all other perturbed variables, is proportional to e'X, so that 

pi(iSZi+Ki)ut = -Vpi+FT,, (4.1) 

where SZ, = w + k . U t .  (4.2) 

V2pi = V -  FTt. (4.3) 

Since the flow is assumed incompressible, the divergence of (4.1) gives 

Using (3.14), and noting that V2(zH*) = +_2kH*, the solution for p, of (4.3) can be 
written in the form 

pi = $ (d: zH+ - d; zH- +A:  H+ +A;  H-),  (4.4) 

where the four arbitrary constants A; can be determined from the kinematic 
boundary conditions at the interfaces. 

At the rigid surfaces z = h,, z = -h ,  the normal component of u must vanish, and 
applying (4.1) and (3.17) we find 

At  the aluminium/cryolite interface z = y, 

D Dv -(y-z) = O  or -- Dt - uZ* 
Dt 

Applying this condition on either side of the interface, and using (4.1) and (3.17) we 
obtain 
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The four equations (4.5)-(4.7) now determine the constants A t .  The essential 
information needed for the dispersion relation is the pressure perturbations on either 
side of the interface, i.e. A:+A;. After a little algebra one finds 

1 
k 

A:+A; = 2(V:- V;) --(d: + d ; )  + h, a:(%, - 1 )  +h,d;(%', + 1) + 2%,(plQ~-k, a,). 
(4.8) 

To write the corresponding equation for layer 2 ,  just replace the suffix 1 by 2, and 

4.2. Dispersion relation 

Now that the various perturbations have been calculated, we obtain the dispersion 
relation by applying the dynamic condition at z = 7 - that the jump in p is balanced 
by surface tension. Thus, to first order in v0, 

V1 by -%,. 

where P, and P, are the zeroth-order pressures in the two layers, and y is the 
coefficient of surface tension. In the unperturbed state the fluid velocity is horizontal, 
so there exists a vertical hydrostatic equilibrium, 

where F is the unperturbed body force. The electric current in the cryolite layer is 
purely vertical, so F2, = -p2g, but the horizontal current in the aluminium gives 

4 1  = -P1S-JJ,B,, 

so that (4.10) 

where Ap = p1-p2. Now using (4 .4) ,  (4.8) and (4.10), the dispersion relation (4.9) can 
be written in the form 

ql Ql(Pl Q, - iK1) + %, Q,(p, Q, - iK,) = yk3 + k(gAp + JH B,) + V i  - V; - V: + V; 
1 

2k 
+-(a: + d ;  - d i  - d i )  -ihz[d;(%, + 1 )  +d,('iB, - l)] -$hl[d:(Wl - 1) +d;(Wl + l ) ] .  

Finally substituting the expressions ford;, V t  given by (3.15) and (3.18) we obtain, 

Y QR,(PI 0, -iK1) + 'is, Q,(p, QZ-iK,) = yk3 + k(gAp+ JHB,) +Mi +M,-M3, (4.11) 

where the magnetic terms are given by 

( 4 . 1 2 ~ )  
ksinh2K, ksinh2Kl ihlpvy 1 ' 

PO JZ,m2 (4.12b, c )  

M , = p  J2 

hlpvl  '5'1, M3 = 
M z  =Po~JH[kZsinh!2K, 2k2 * 

This derivation is strictly valid only if B, is independent of x and y, since 
throughout the calculation both w and k have been treated as constants. In general 
B, will not be constant, but we show in the next section that its effect is small 
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compared with the dominant magnetic terms, so any inconsistency is unimportant. 
We note that this is the only term in the dispersion relation which is affected by the 
presence of a uniform magnetic field - all other magnetic terms depend on the field 
gradient. 

5. Interpretation of results 
5.1. Special cases 

If we set 4, U, and K$ all equal to  zero in (4.11) we obtain the dispersion relation 

+ p 2  g2)w2 = gkAp + yk3.  (p,  
This is just the dispersion relation for capillary-gravity waves at the interface 
between two fluid layers. Since cryolite is less dense than aluminium, Ap > 0, so 
gravity and surface tension are both stabilizing. 

If we set JH = 0 (electric current purely vertical), h, = 03 (aluminium pool 
infinitely deep) and take U, and K~ to be zero (ideal fluids initially in equilibrium), we 
recover the model considered in paper I. The dispersion relation (4.11) reduces to 

(pl  + W2 p,) w2 = yk3 + Apgk + Po J: h2 PH 
k sinh2 K ,  ' 

which is equivalent to (3.1 1 )  of paper I. The expression (3.16a) for PH can be written 
in the form 

(5.2) PH = m2 + $k2 sin (28) (A,  - A 2 ) ,  

where the A, are the (real) eigenvalues of the symmetric 2 x 2 matrix (P,), 1 < i ,  j < 2, 
and €' is the angle between one of the principal axes of this matrix and the 
wavenumber vector k .  As discussed in paper I the local magnetic field, represented 
by the first term on the right-hand size of (5.2), is always stabilizing, but remaining 
far-field terms may lead to a negative and destabilizing PH. This term represents a 
potentially dangerous instability, since h,/sinh2 K ,  becomes unbounded as h, + 0. 
Thus if the far-field gradients yield a negative PH, instability will always occur if the 
cryolite layer is sufficiently thin. We shall call this mechanism, the basic instability. 

Note that the basic instability can be eliminated if the matrix (&) is isotropic, so 
that A, =A,.  The implication for aluminium cell design is that the current 
distribution should be arranged as symmetrically as possible. 

5.2. General case 
To analyse the dispersion relation in more detail, we write the solution of (4.11) for 
w in the form 

iK-  k -  (p,  %, U, + p, q2 V2)  f A; 
w =  

Pl'%l+P2%2 
, (5.3) 

where 2~ = Wl K~ + W2 K~ and the discriminant A is given by 

A = R(P1 Y + P2 Y )  - P1 P2 Y w 2  8: - K2 + ig1 w 2  U P 2  K1- P1 K 2 ) .  (5.4) 
In  (5.4) we have used the abbreviation 6, = k -  (U,  - U,) ; R denotes the right-hand 
side of the dispersion (4.11). The obvious fluid dynamic effects are stabilization by 
the linear frictional term iK, and destabilization by the Kelvin-Helmholtz term 
- P1 P2 Y '%2 8:. 

The magnetic terms of R will be destabilizing if negative or complex. The real part 
M , ,  say of M I  (equation (4.12 a ) )  represents the basic mechanism discussed in paper 
I .  The term M3 involving J L  is always destabilizing, and represents the pinching 



Interfacial instabilities in aluminium reduction cells 121 

0.02 

F2 

0.01 

0 

0.0; 

FZ 

0.01 

0 

Pv = 

8” = 1.0 

lo-’ 1 .O 
I I 

1.0 

- --I 
10.0 

............ .... _ _ - - -  .-. h, = 0.2, h, = 0.04 .‘ 

h, = 0.1, h, = 0.02 
........................ 

h, = 0.05, h, = 0.01 

I I I 
10-1 1 .O 10.0 

I 
I I 

10-1 1 .O 

FIGURE 2. Graphs of critical Froude number Fa versus wavelength A .  The parameters J,, Ap, and 
y assume typical values given in $5.2. The dashed curve represents the pure Kelvin-Helmholtz 
instability in the absence of electromagnetic effects. In (a) h, =4 cm, h, = 20 cm and the values of 
,&, p, are varied separately. (Only one of & /3, is non-zero for any given curve.) In (b) pH = - 1, 
rB, = 1 and the layer depths are varied. Note that the wavelength scale is logarithmic. 
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effect of the mutually attracting horizontal currents (or tearing mode), as analysed 
by Murty (1961). The imaginary terms M,, and M,, may give rise to negative 
imaginary parts in w which will also be destabilizing. 

To compare relative magnitudes of gravity, surface tension, and magnetic 
components of R we define dimensionless numbers 

where L is a horizontal lengthscale of the cell. We have assumed k = O(L-') since it 
is apparent from (4.12) that  the longest wavelengths are most prone to magnetic 
destabilization. Using typical values in SI units, J, = lo4, Ap = 1.82 x lo2,  g = 9.81, 
L = 1, y = 0.5, we find 

NM = 7.0 x lo-', N, = 2.7 x 

Thus the surface tension is negligible for the longest wavelengths. Furthermore M,, 
M3 and the gravity-type term JH B, in (4.1 1 )  are of order NM compared to kApg, and 
may also be neglected, to good approximation. The term M ,  however depends on the 
depths of the aluminium and cryolite layers: 

We have assumed K , ,  K ,  4 1, which is reasonable since in a typical cell, h, = 20 cm 
and h, = 4 cm, compared with the horizontal lengthscale of 1 m. Thus we see that 
MIR and M,, are comparable or even somewhat larger than gravity. The most 
dangerous term seems to be MI, ,  which is proportional to pv ; thus vertical magnetic 
field gradients play a vital role. It is interesting that both MIR and M,,  are 
independent of the horizontal current component JH, which appears only in the 
lower-order magnetic terms. 

To present our results graphically we follow Moreau & Ziegler (1986), and define 
a Froude number F by setting 

then plot the value of F2 giving neutral stability against wavelength h = 2n/k. The 
neutral curves Im ( w )  = 0 separate the (A ,  F2)-plane into unstable and stable regions. 
The dashed curve is the boundary in the absence of magnetic forces (pH = pV = 0) ,  
which is similar to the usual Kelvin-Helmholtz curve but slightly modified by 
frictional damping. To illustrate the separate effects of horizontal and vertical 
magnetic field gradients, the parameters PH and pv have been varied in figure 2(a) 
-one parameter being set equal to zero as the other is varied. It can be seen that 
magnetic effects are important only for wavelengths of order 1 m or more. The effect 
of /IH depends upon its sign, positive values being stabilizing and negative values 
destabilizing. The term pv is always destabilizing - more dramatically so than /IH, 
as predicted above. Figure 2(b) also shows that decreasing the layer depths h, and 
(particularly) h, makes the system more susceptible to  magnetic instabilities. For the 
curves in figure 2, only the dominant magnetic term M ,  has been included in the 
calculation. 



6. Physical interpretation 
The interplay of physical effccts considered in thc last section is difficult to 

unravel, and the aim of this section is to describe just one simple mechanism for 
electromagnetic destabilization. 

We considcr a disturbance propagating in the x-direction so that the wavenumber 
vector k = (1, 0, 0). We also assume that there is no horizontal current, JH = 0, and 
that the only non-vanishing components of the tensor p are 

PI2 = P 2 1 =  B (say) > 0. 

B = tLoJ,(PY, ( 1  +PI x, 0). 

Equation (3.16) thus gives pH = -12Bp, which is negative and destabilizing. Equations 
(2.1) and (2.2) give 

(6.1) 

We assume zero mean flow and ignore the frictional term, setting U, = 0 and K = 0. 
Figure 3 shows the field lincs of the perturbation current j, calculated using the 

formulae in 53. If the perturbation is unstable, we would expect the circulation r 
around the closed loop ARCD in the figure, 

r=S u-dx ,  

to  be positive - i.e. in the sense indicated by the double arrows. The fluid would then 
be rising where the interface is elevated, and falling where it is depressed. Integrating 
the equation of motion (2.3) around ABCD eliminates the pressure and gives 

A B C D  

(6.2) 

If the disturbance is therefore to  grow, the body forces F must generate positive 
vorticity inside ABCD. 

Considering the first term, j x  B, of the Lorentz-force perturbation, we find 

[ V x ( i x B ) I ,  = [ - ( i .V)Bl ,  = - j x P o J o ( 1 + P )  
using (6.1). Sincc J, < 0 (the current is flowing down from the anode) we can apply 
Stokes’s theorem to (6.2) and write 

where R is the interior of ABCD and c a positive constant. It can be seen in figure 3 
that j ,  < 0 for y > 0 while j ,  > 0 for y < 0. Clearly, however, the positive 
contributions to thc integral in (6.3) will overwhelm the negative contributions, since 
the aluminium (y < 0) includes the return path of the current, where j is almost 
horizontal and in the positive x-direction. I n  the cryolite on the other hand j is nearly 
vertical, and lj,l is smaller, so the negative contributions from this region are less 
important. (This can be confirmed by an exact integration, using the formulae f o r j  
in $3.) The current circuit for j is of course completed in the anode, which has much 
greater conductivity than the cryolite. The conclusion from (6.3) is therefore that r 
will be positive and destabilizing. 

The second Lorentz-force term, V ( J x  b) ,  may be stabilizing, but is independent of 
the far-field gradient /3. In (6.3) the constant c = po(Jo((l +p), so if /3 is large enough 
the first term will always be more important than the second and instability must 
occur. 

J FLM 236 



124 A .  D. Sneyd 

FIGURE 3. Fieldlines of the perturbed current flowj. 

To summarize, the electrical conductivity ratios are crucial in driving the 
instability. The mechanism relies on the fact that j is almost vertical in the cryolite, 
but has an important horizontal component in the aluminium. Once again the role 
of the far-field gradients is highlighted. 

To conclude this section we note two other general characteristics of the instability 
which have a simple physical interpretation. First, instabilities occur a t  longer 
wavelengths, mainly because the stabilizing effects of surface tension and gravity are 
then weaker. The electromagnetic forces on the other hand either remain constant, 
or become stronger as the wavelength increases (see (4.12)). Secondly, increasing the 
depth of the aluminium pool is always stabilizing. The unstable wavelengths are 
typically much longer than H so the associated fluid motion always penetrates the 
entire pool depth. Thus, the deeper the pool, the greater the energy required to 
establish a wave. 

7. Conclusions 
We have modelled an aluminium reduction cell by uniform horizontal plane 

conducting layers of finite depth and infinite horizontal extent. In  the undisturbed 
state the electric current is uniform and the magnetic field a linear function of 
position, and mechanical dissipation in the flow has been modelled by a linear 
frictional term. The propagation of plane waves across the layer is described by an 
anisotropic dispersion relation. Gravity, surface tension and friction are stabilizing, 
while the Kelvin-Helmholtz mechanism is always destabilizing. Electromagnetic 
effects may also be destabilizing at wavelengths of order 1 m or more, depending on 
the magnetic field gradients due to remote conductors. The most important 
destabilizing term arises from vertical gradients of the horizontal field components 
(or horizontal gradients of the vertical field). 

The main limitations of this analysis are the uniform-current assumption, and 
infinite horizontal extent of the layer. In practice the horizontal current may change 
sign across the cell, but since the most important magnetic instability depends purely 
on the vertical current component J, (which is approximately constant), this 
limitation may not be so serious. Although the dispersion relation is homogeneous, 
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the linearly varying magnetic field imposes a linear variation on the wave-induced 
flow (paper I). lateral boundaries (cell walls) must therefore have an important 
influence on stability, and this effect needs further study. 

Appendix. Derivation of boundary conditions 
We denote the current potential in layer i by 

anode and layer 4 the carbon cathode at the base of the aluminium pool): 
(note thav layer 3 is the carbon 

@1 = J O Z + J H X + $ ~  @2 = Joz+(g,/al)  J ~ X d - 4 2 ,  

@3 = J o z + ( g c / ~ l ) J H ~ + $ , ,  @4 = J o z + ( g C / a i )  JH5+$4 ,  

where uc is the electrical conductivity of carbon, and the $i are the perturbation 
current potentials. At each interface the normal current and tangential electric field 
must be continuous - i.e. 

V@. ii, g - 1  V@ x ii, (A l a ,  b )  

must be continuous across each interface. 

A. 1.  Cryolitelanode interface 

Applying (A l b ) ,  

This simplifies to  

Since g 2 / r c  4 1 ,  we approximate V#, x 3 = 0 at z = h, to give (3.2). 

v42 x z" = (a,/ac) v43 x z". 

A. 2. Aluminiumlcathode interface 

Applying (A l b )  we find 

and since uc/gl -4 1 we approximate 

(v44),=42 x z" = 0. (A 2) 

The cathode may be imagined to  extend to infinity, in which case Vq54 -+ 0 as z + - 00, 

or (as assumed by Pigny & Moreau 1991) the cathode may have a lower plane surface 
on which the normal derivative of q54 vanishes. Either condition together with (A 2) 
implied that q54 = 0. Then (A l a )  gives a$,/az = 0 at z = -hl, which yields (3.3). 

A. 3. Aluminiumlcryolite interface 
The unit normal at this interface is t - V y ,  so (A l a )  gives 

The leading order in 7 this gives 

5-2 
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and using the approximation cr2/crl -4 1 leads to (3.4). 
Also at  this interface (A l b )  gives 

To leading order in 7 :  

0- 
+ ( V g l , + J a r ) x ~ = " V ( ~ , + J , , r ) x ~ ,  

g 1  

and again using the approximation cr2/v1 < 1 leads to (3.5). 
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